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Critical Mach Numbers for Magnetohydrodynamic Shocks with Accelerated Particles and Waves

J. Martin Laming1

1Space Science Division, Code 7684, Naval Research Laboratory, Washington DC 20375, USA

ABSTRACT

The first critical fast Mach number is defined for a magnetohydrodynamic shock as the Mach number

where the shock transitions from subcritical, laminar, behavior to supercritical behavior, characterized

by incident ion reflection from the shock front. The ensuing upstream waves and turbulence are

convected downstream leading to a turbulent shock structure. Formally this is the Mach number

where plasma resistivity can no longer provide sufficient dissipation to establish a stable shock, and

is characterized by the downstream flow speed becoming subsonic. We revisit these calculations,

including in the MHD jump conditions terms modeling the plasma energy loss to accelerated particles

and the presence of waves associated with these particles. The accelerated particle contributions make

an insignificant change, but the associated waves have a more important effect. Upstream waves

can be strongly amplified in intensity on passing through the shock, and represent another means of

shock dissipation. The presence of such waves therefore increases the first critical fast Mach number,

especially at quasi-parallel shock where wave excitation is strongest. These effects may have significance

for the solar regions where shock waves accelerate particles and cause Type II and Type III radio bursts,

and also contribute to the event-to-event variability of SEP acceleration.

1. INTRODUCTION

Solar Energetic Particles (SEPs) accelerated at shock waves driven by Coronal Mass Ejections (CMEs) comprise the

most serious space weather hazard for instrumentation (and humans) in orbit outside the protection of the Earth’s

magnetic field. In the most extreme and damaging of these events, SEP acceleration is inferred to begin close to the

Sun, almost as soon as the solar wind disturbance initiated by the CME steepens into a shock. A common assumption

is to connect the onset of SEP acceleration with the magnetohydrodynamic (MHD) shock strengthening beyond the

so-called “first critical Mach number” (e.g. Mann et al. 1995; Lepri et al. 2012), following the suggestion of Edmiston

& Kennel (1984). This point marks where dissipation beyond that provided by the plasma resistivity is required to

establish the shock structure (Edmiston & Kennel 1984), and can be identified with conditions where the postshock

flow speed becomes subsonic (Coroniti 1970). On transitioning from subcritical to supercritical, the shock ceases to

be laminar and a shock precursor of reflected ions develops (Treumann 2009). In this way waves and turbulence can

develop upstream, which are necessary conditions for energetic particle acceleration. In fact this argument can be

turned around to say that supercritical collisionless shock waves must reflect ions (Treumann & Jaroschek 2008), and

therefore that energetic particle acceleration becomes inevitable in order to achieve sufficient dissipation in the shock.

The first critical fast Mach number is also crucial to other phenomena, such as Type II and Type III radio bursts,

where shock generated turbulence is required to accelerate electron beams and might also have consequences for the

shock morphology observed by imaging instruments. According to Ramesh et al. (2022) and references therein, Type

II radio bursts usually propagate at Alfvén Mach numbers MA = v/vA < 2, which implies association with a shock

of similar MA. Mann et al. (1995) had previously argued that such observations suggest either supercritical quasi-

parallel or subcritical quasi-perpendicular shocks, with a possible threshold at shock compression r ' 1.35 favoring

supercritical quasi-parallel shocks. Similarly, Maguire et al. (2020) favor a threshold of MA = 1.4 − 2.4 for Type II

burst onset, implying a supercritical quasi-parallel or quasi-perpendicular shock, and a burst cessation when the shock
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2 Laming

reaches ∼ 2.4 R� and becomes closer to being strictly parallel diminishing efficient electron acceleration as magnetic

field lines become more radial.

While Type II radio bursts seem to require supercritical shocks, the observations of Zhu et al. (2018) imply that SEPs

can be accelerated while the shock is subcritical. Studies of the 2012 January 17 event reveal that SEPs accelerated by

the shock are released when shock hits the first critical Mach number. Zhu et al. (2018) determine MA ' 1.5 at release,

implying SEP acceleration occurring for 1 < MA < 1.5. This is potentially an important insight with implications

for predicting the onset and severity of SEP events, and matches with recent suggestions that SEP events are favored

when the CME driven shock encounters a population of already suprathermal ions that can act as seed particles for the

acceleration process (e.g. Laming et al. 2013, and references therein). In such a case, the shock itself is not required to

generate its own turbulence (by becoming supercritical), because the pre-existing seed particle distribution does that

upon interacting with the shock. Type II bursts then also require energetic particle escape from the shock for onset,

similarly to Type III bursts, although in the Type II case, the released particles do not propagate far ahead. The

recent studies of Gopalswamy et al. (2016), Pesce-Rollins et al. (2022) and Klein et al. (2022) can also be interpreted

in this way. Gamma ray emission from a behind-the-limb solar flare is detected by the Fermi Large Area Telescope

(LAT) in coincidence with a Type II radio burst. Direct gamma rays from the flare site are of course occulted, so the

Fermi-LAT emission must be due to particles accelerated at a shock associated with the flare, escaping and impinging

on the chromosphere on the near side of the Sun. These particles are probably escaping from the rear of the shock,

towards to downstream medium, while those that escape towards the upstream excite Langmuir waves and cause the

Type II radio burst.

The calculations of Edmiston & Kennel (1984) are generally referred to in considerations of shock criticality, but

in the case that the shock has already begun accelerating SEPs out of a pre-existing seed particle population, the

shock jump conditions will be modified by the presence of SEPs and their associated waves and turbulence. In the

following sections we evaluate this effect. Section 2 discusses the revised shock jump conditions, while section 3 solves

for the density compression and hence derives the first critical fast Mach number as a function of plasma β (the

ratio of gas pressure to magnetic pressure) and the shock obliquity. Section 4 offers some discussion and conclusions,

most important of which will be that the first critical fast Mach number increases with the presence of pre-existing

accelerated particles and waves. In the event that the shock transition to supercriticality is the primary step towards

release of SEPs, this effect will mean that a shock strongly loaded with accelerated particles will being SEP release

later rather than sooner, and at presumably higher SEP energy too, making the first critical fast Mach number and its

variability with SEP and wave pressure an important parameter controlling the variation in the SEP effectiveness of

CME driven shocks. Much of the literature concerning particle acceleration at shocks focuses on astrophysical rather

than heliophysical settings, e.g. shocks driven by supernova remnants, with the accelerated particles referred to as

“cosmic rays” rather than SEPs. Throughout this paper we use both terms interchangeably, depending mainly on the

literature being cited. Some of the more technical details concerning wave reflection and transmission coefficients at

oblique MHD shocks, and the presence (or absence) of other critical Mach numbers in the flow are given in Appendices

A and B respectively.

2. SHOCK JUMP CONDITIONS

Historically, the effect of cosmic rays on shock discontinuities has been treated in the two-fluid hydrodynamic

approximation (e.g. Drury & Voelk 1981; Drury 1983) with a more comprehensive analysis of the various important

Mach numbers involved given by Becker & Kazanas (2001). These treatments have separate pressure and energy

fluxes for the thermal gas and the cosmic rays, treated as fluids with adiabatic indices γ = 5/3 and 4/3 respectively.

Magnetic fields have not been included, nor in general have waves or turbulence. In a review, Drury (1983) summarizes

prior work on including waves in hydrodynamical models, and Ko (1992) gives further discussion, with the inclusion

of forward and backward going waves and second order Fermi acceleration. In contrast to the models above with

pre-existing cosmic rays, Vink & Yamazaki (2014) investigate a two-fluid model of a cosmic ray accelerating shock,

on the basis of which they derive a critical sonic Mach number Ms =
√

5 as a threshold for particle acceleration, or

more precisely, a threshold for the development of a shock precursor associated with particle acceleration. Exceptions

to this occur when there are pre-existing energetic particles.

We consider jump conditions for the thermal gas at an MHD shock, including contributions from magnetic field

and MHD waves. Cosmic rays, or SEPs, obey separate jump conditions (Drury & Voelk 1981; Drury 1983; Becker

& Kazanas 2001). They only appear as sinks of energy and momentum in the thermal gas jump conditions. When
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Figure 1. Left: Schematic diagram of wave propagation at the oblique shock, in the shock rest frame. Upstream (left), plasma
moves towards the shock front with velocity u1, carrying with it magnetic field B1 at angle θ1 to v1 (or the shock normal).
Postshock, the magnetic field is B2 at angle θ2 to the shock normal and the flow velocity is v2. In the preshock medium, waves
are assumed to be parallel propagating along B1. Postshock, the magnetosonic waves refract and travel at an angle θ2W to
the shock normal. Alfvén waves refract at a slightly different angle, but this plays no role in their reflection and transmission
coefficients. Right: Contour plot of the first critical fast Mach number in the plasma β - θ1 plane for ECR/ρ1v

2
1|| = 0 (see Fig

4c in Edmiston & Kennel 1984).

the cosmic ray number density nCR << n, the thermal gas number density, the cosmic ray contribution to the mass

continuity can be neglected. The cosmic ray pressure is continuous across the shock, so they make no contribution to

the momentum jump. And working in the rest frame of the shock, in the absence of cosmic ray escape, we take the

cosmic ray energy flux to be zero, so those terms also drop out of the energy equation. We emphasize that our goal is

not to model all details of a cosmic ray modified shock, but more simply to estimate the effects of accelerated particles

and waves on the shock criticality.

A schematic diagram of the MHD shock is given in the left panel of Fig. 1. The upstream magnetic field B1 makes an

angle θ1 to the shock normal. A frame of reference is chosen so that plasma inflow to the shock with velocity v1 is along

this shock normal. Postshock the magnetic field B2 makes an angle θ2 to the shock normal, and the postshock flow

speed v2 has normal and transverse components. The waves associated with the SEPs are generated in the upstream

medium and assumed to be parallel propagating with respect to B1. These are amplified and refracted upon passage

through the shock. The amplification is treated by calculating the reflection and transmission coefficients for forward

and backward propagating waves at an oblique shock, generalizing the earlier case considered by Laming (2015) of

high Mach number to arbitrary Mach number. In the case of Alfvén polarization, the wave refraction plays no role

in the transmission and reflection coefficients, because the wave magnetic field is perpendicular to the plane defined

by the wavevectors in upstream and downstream. For the magnetosonic polarization, this angle of refraction, denoted

here as θ2w with respect to the shock normal, does have an effect on the transmission and reflection coefficients. It

is interesting to note that the Alfvén and magnetosonic polarizations in fact refract at different angles, so an initially

circularly polarized upstream wave becomes decomposed into its plane polarized Alfvén and magnetosonic components

downstream. This difference tends to zero as the Alfvén Mach number becomes infinite. The various relations between

upstream and downstream shock parameters, and the wave reflection and transmission coefficients of relevance to this

paper are collected in Appendix A.

With subscripts 1 and 2 denoting the upstream and downstream regions respectively, the mass jump condition is

written

ρ1v1|| = ρ2v2|| (1)

for densities ρ1,2, velocities v1,2 and contains nothing remarkable. We write the thermal gas momentum jump condition

as

ρ1v
2
1|| + P1 + P1w +

B2
1⊥

8π
+ F1v1|| = ρ2v

2
2|| + P2 + P2w +

B2
2⊥

8π
+ F2v2|| (2)
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for pressures P1 and P2 and magnetic fields B1 and B2 in upstream and downstream respectively. In equation 2,

F1 = F2 = − (2/3)nCRpCR
(
v1|| − v2||

)
/ 〈vCR〉 are the momenta imparted to the population of accelerated particles

in terms of their number density, nCR and momenta pCR, by the diffusive shock acceleration process in the upstream

and downstream regions (e.g. Drury 1983, section 2.3.2, equation 2.47). We take 1/ 〈vCR〉 =
∑
i 1/vi/nCR where the

vi are the individual cosmic ray velocities and nCR is their number density, which is clearly dominated by the lowest

energy cosmic rays which can be injected into the acceleration process. Working in the shock rest frame, at the shock,

the upstream medium has lost momentum to the accelerated particles relative to the far upstream. Downstream, some

of this momentum is gained back.

In our case P1w and P2w represent the combined Alfvén and magnetosonic wave pressures in upstream and down-

stream, coming from forward and backward propagating waves. These are connected by the amplitude transmission

T and reflection R coefficients at the shock as follows

P2w = P2wf + P2wb = P1wfT
2
f + P1wbR

2
b + P1wbT

2
b + P1wfR

2
f . (3)

The subscripts f and b refer to forward and backward propagating waves with magnetic perturbations δB1b, δB1f and

similarly for region 2. The transmission and reflection coefficients are defined by Tf = δB2f/δB1f , Rf = δB2b/δB1f ,

Tb = δB2b/δB1b, and Rb = δB2f/δB1b. Full expressions for Tf,b and Rf,b derived from Laming (2015) are given in

the Appendix. As MA1 = v1||/vA1 → ∞, Tf = Tb = (r +
√
r) /2, Rf = Rb = (r −

√
r) /2 for Alfvén polarization

and (r ±
√
r)
√

sin2 θ1 + r2 cos2 θ1/2 for the magnetosonic polarization, where r = ρ2/ρ1 = v1||/v2|| is the shock

compression.

Equation 2 implies a cosmic ray momentum equation P1CR − F1v1CR = P2CR − F2v2CR. If v1CR = v1|| and

v2CR = v2||, then equation 2 takes a form with F1v1|| → P1CR and F2v2|| → P2CR. However in the case we consider,

where cosmic rays are being accelerated but are not yet escaping from the shock, v1CR < 0 and v2CR > 2, as the

trapped cosmic ray populations grows, increasing in distance both ahead of and behind the shock. The magnitudes of

both are |v1CR| << v1|| and v2CR << v2||. If these values are allowed to tend to zero, i.e. equal numbers of cosmic

rays propagating back and forth across the shock, then P1CR = P2CR.

The energy jump condition is

1
2 ρ1v

3
1|| +

γ

γ − 1
P1v1|| + 2P1wv1|| +

B2
1⊥

4π
v1|| + E1v1|| =

1
2 ρ2v

3
2|| +

1

2
ρ2v

2
2⊥v2|| +

γ

γ − 1
P2v2|| + 2P2wv2|| +

B2
2⊥

4π
v2|| + E2v2|| (4)

where E1 = E2 = − (2/3)nCRpCR
(
v1|| − v2||

)
are the energies imparted to the SEPs by the acceleration process.

Again, working in the rest frame of the shock, energy is absorbed by the accelerated particles from the upstream

medium, and some is deposited back downstream. In the rest frame of the upstream medium, energy and momentum

are absorbed from the motion of the shocked gas, with some given back to the upstream. The wave energy flux terms in

equation 4 assume equal intensities of forward and backward propagating waves in both the upstream and downstream

media. This is the simplest case, and we discuss the relaxation of this approximation below in equations 10 and 11.

Anticipating our final interpretation below, we ignore cosmic ray escape from the acceleration process, so that the

cosmic ray energy flux in the shock rest frame is close to zero. There are approximately equal numbers of accelerated

particles and equal energy fluxes propagating in each direction across the shock in the diffusive shock acceleration

process.

Prior treatments of purely hydrodynamic shocks (e.g. Drury & Voelk 1981; Drury 1983; Becker & Kazanas 2001) do

not consider the terms in F1, F2, E1, or E2. In fact they make very little difference to our results below, being only

discernable for the highest cosmic ray pressure case in Figure 2. We include them because they do capture the shock

compression due to energy loss to cosmic rays (see equations 8 and 11 below), which works in the opposite sense to

the more dominant effect of the waves, and therefore cannot be neglected in all cases. These prior treatments also

assume cosmic rays drifting with the gas flow speed upstream and downstream, and not trapped at the shock in the

acceleration process as we do. These approximations are considered in more detail in Appendix B.

The wave intensity is given by the model of Bell & Lucek (2001), generalized to oblique shocks. When δB << B,

P1w = PCR cos θ1/2MA. (5)
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For larger amplitude waves, where vA is determined by δB, Bell & Lucek (2001) give expressions in the cases

that either isotropization or advection of waves dominates. These are appropriate at higher Mach numbers,

MA > 4ρ1v
2
1||/PCR cos θ1 than are relevant in our study here.

We rearrange equation 2 in favor of P2, and substitute into equation 4 to derive an equation for the shock compression,

r. Expressions for B2⊥ and v2⊥ are given in Appendix A, equations A1 and A2. We also assume that P1w is evenly

split between Alfvén and magnetosonic polarizations, and that both P1w and P2w have equal intensities of forward and

backward propagating waves. We write T 2 =
∑
pol

(
T 2
f + T 2

b

)
/4 and R2 =

∑
pol

(
R2
f +Rb2

)
/4, treating all waves as

incoherent and neglecting any interference, to find{
a

r
− 1

M2
s1

+
P1w

ρ1v21||

γ − 2r (γ − 1)−
(
T 2 +R2

)
(2− γ)

r − 1
+
F1/r − F2/r

2

ρ1v1||

γ

r − 1
− E1 − E2/r

ρ1v21||

γ − 1

r − 1

}(
1

r
− cos2 θ1

M2
A1

)2

− sin2 θ1
M2
A1r

{
1

r

(
a− 1− r

2

)
− a cos2 θ1

M2
A1

}
= 0, (6)

where a = (γ + 1) /2− r (γ − 1) /2. In the absence of the cosmic ray terms, equation 5 reduces to the standard result

(e.g. Melrose 1986, equation 8.75, with a typographical error corrected) or Priest (2014, equation 5.48). For a parallel

shock (θ1 = 0◦) equation 5 simplifies to

γ + 1

2r
− γ − 1

2
− 1

M2
s1

+
P1w

ρ1v21||

γ − 2r (γ − 1)−
(
T 2 +R2

)
(2− γ)

r − 1
− 2

3

nCRpCR
ρ1v1||

(r − 1)

{
v1||

vCR

γ

r3
− γ − 1

r2

}
= 0 (7)

which, when P1w is neglected and vCR >> v1||, is a quadratic equation in r with solution

r=

γ+1
2 + 2

3
PCR

ρ1v21||

v1||
vCR

(γ − 1)

γ − 1 + 2/M2
s1

+

√√√√√ γ+1
2 + 2

3
PCR

ρ1v21||

v1||
vCR

(γ − 1)

γ − 1 + 2/M2
s1

2

− 4

3

PCR

ρ1v21||

v1||
vCR

(γ − 1)

γ − 1 + 2/Ms1

'
γ + 1 + 8

3
PCR

ρ1v21||

v1||
vCR

γ−1
γ+1

(
1− 1/M2

S1

)
+ ...

γ − 1 + 2/M2
s1

. (8)

This is the expected result, that energy loss to cosmic rays results in increased shock compression over the usual

(γ + 1)
(
γ − 1 + 2/M2

s

)
in terms of the cosmic ray pressure PCR = nCRpCRvCR = (γCR − 1)ECR, with the cosmic

ray energy density and adiabatic index given by ECR and γCR respectively. Hence ECR = 3nCRpCRvCR/2 when the

cosmic rays are nonrelativistic and ECR = 3nCRpCRvCR when relativistic, as γCR varies between 5/3 and 4/3. The

term in P1w/ρ1v
2
1|| complicates things because of the r−1 in the denominator, except when γ = 2 and the compression

is reduced as 1/M2
s1 → 1/M2

s1 + 2P1w/ρ1v
2
1||. We expect similar behavior at lower γ, because the waves represent a

γ = 2 contribution to the pre- and post-shock momentum and energy fluxes, in that vA =
√
γP/ρ =

√
2×B2/8π/ρ.

For a perpendicular shock (θ1 = 90◦), with P1w → 0 and v1|| << vCR as before,

γ + 1

2r
− γ − 1

2
− 1

M2
s1

+
2

3

nCRpCR
ρ1v1||

(r − 1)

{
γ − 1

r2

}
+
γ

2

(r − 1)

M2
A1

= 0. (9)

With nCR = 0 this reduces to a quadratic equation with solution

r =
γ + 1

γ − 1 + 2/M2
s1 + γ/M2

A1

+ ... = r0 (10)

The full solution of the cubic equation 9 is very complicated. An easier approach is to write r = r0 + δ with δ << r0,

and substitute into equation 9 to find solution

r =
γ + 1 + 8

3
PCR

ρ1v21||

v1||
vCR

γ−1
γ+1

(
1− 1/M2

S1 − γ/2M2
A1

)
+ ...

γ − 1 + 2/M2
s1 + γ/M2

A1

, (11)

which is the same as equation 8 with the substitution 1/M2
S1 → 1/M2

s1 + γ/2M2
A1.
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Before proceeding to an evaluation of the first critical Mach number following Edmiston & Kennel (1984) below,

we first make some comments about the presence (or absence) of other critical Mach numbers in the cosmic ray

modified shock. We are considering a shock driven by a solar coronal mass ejection starting off as a waves, gradually

steepening to a shock and beginning to accelerate particles. For the relevant shock parameters, the cosmic rays (or

solar energetic particles) remain nonrelativistic with γCR = 5/3. Thus critical Mach numbers in hydrodynamic shocks

associated with multi-valued downstream solutions that arise with γCR = 4/3 (e.g. Drury & Voelk 1981; Drury 1983)

do not concern us here. Nonrelativistic cosmic rays of sufficient pressure may still smooth out the discontinuous shock

transition. Becker & Kazanas (2001) in their Figure 2a give a range of sonic Mach numbers Mg0 =
√
ρv2/γGPG and

Mc0 =
√
ρv2/γCRPCR for which a discontinuous shock transition is guaranteed. For γCR = γG = 5/3, for Mg0 > 5.5,

the discontinuity vanishes, even when the cosmic ray pressure goes to zero. This falls in the range of sonic Mach

number (Mg0 ' Mf

√
2/γβ + sin2 θ for β << 1) relevant to our case, but is based on a model where the cosmic rays

stream with the velocity of the background gas. Appendix B shows that this inconsistency disappears if the cosmic

rays are treated as being trapped in the acceleration process at the shock, up to a maximum cosmic ray pressure

given by equation B19 which evaluates to PCR,max/ρv
2 = 0.2 for M → ∞. At lower M relevant to Figure 2 below,

PCR,max/ρv
2 ∼ 0.1. This becomes relevant for the highest energy case at the highest values of β considered. Finally,

Vink & Yamazaki (2014) derive critical sonic Mach numbers of
√

5− 2.5 depending on plasma β and shock geometry

for the existence of a cosmic ray precursor, which also lands in the middle of the range of Mach numbers considered

below. But these results do not apply in a case with pre-existing cosmic rays (where a precursor of some sort is

inevitable), and so are not considered further.

3. FIRST CRITICAL MACH NUMBERS

We solve the full equation 6 for the shock compression, r, for a range of plasma β = 1.2M2
A1/M

2
s1 = 8πP/B2 for

γ = 5/3 between 0 and 1, and for shock obliquities θ1 = 0−90 degrees. Cases of different SEP particle energy densities

are considered, with values chosen to match the range of those given by Emslie et al. (2012). The upstream wave

intensity is then taken from equation 5. Various prescriptions for vCR/v1|| have been tried and we eventually settled

on vCR/v1|| = 2/
(
cos θ1 + 10−6

)2
chosen to match the injection energy modeled in Zank et al. (2006) and to avoid

numerical problems at cos θ = 0. It plays very little role in the final results. We then calculate the sonic Mach number

in downstream medium,

Ms2 = v2||

√
ρ2
γP2

=

{
γ (r − 1) +

r

M2
s1

+
rγ

2

(
sin θ1

M2
A1 − r cos2 θ1

)2 {
M2
A1

(
1− r2

)
+ 2 cos2 θ1

(
r2 − r

)}
+ rγ

P1w

ρ1v21||

(
1−

(
T 2 +R2

))
− 2

3

PCR
ρ1v21||

(
v1||

vCR

)2
(r − 1)

2

r

}−1/2
, (12)

and determine the first critical fast Mach number where M2s = 1. That this condition corresponds to the first critical

Mach number derives from an argument by Coroniti (1970), which we briefly summarize here. Consider a perpendicular

shock where all dissipation is resistive, so that the shock transition occurs on a length scale of order the magnetic

diffusion length. If Ms2 > 1, then sound waves coming from the downstream region cannot reach the shock, and it

remains stable. If Ms2 < 1, such sound waves can add kinetic energy to the shock. The shock must either steepen

again or begin to reflect incoming ions, since no more resistive dissipation is available for the extra kinetic energy.

This is the onset of supercriticality.

Figure 2 plots the first critical fast Mach number for values of (nonrelativistic) ECR/ρ1v
2
1|| = 0.025, 0.05, 0.1 and

0.2 in the β − θ1 plane, for comparison with Figure 1 right panel which gives the case of PCR = 0 from Edmiston

& Kennel (1984). The terms involving cosmic rays and turbulence increase the first critical Mach number for quasi-

parallel shocks. This effect is due to the waves accompanying the cosmic rays, which diminish in intensity as the shock

becomes more oblique. Critical Mach numbers for perpendicular shocks are almost unchanged from the PCR = 0 case,

and at the highest cosmic ray pressure considered, ECR/ρ1v
2
1|| = 0.2, the critical Mach number is almost independent of

shock obliquity. The increase in critical Mach number can be understood in terms of the extra dissipation available to

the shock. The pre-existing waves are strongly amplified in intensity on passing through the shock, and this represents

an extra mode of dissipation available to the shock beyond the resistivity, thereby increasing the Mach number at

which the shock becomes supercritical. Note that this shock amplification of pre-existing waves is distinct from ion

reflection and the waves generated by this at the onset of supercriticality.
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Figure 2. Contour plots of the first critical fast Mach number in the plasma β - θ1 plane for ECR/ρ1v
2
1|| = 0.025, 0.05, 0.1 and

0.2 in top left, top right, bottom left, and bottom right respectively.

Equation 4 assumed equal wave intensities propagating forward and backward in the upstream and downstream

media. Relaxing this approximation, following equation 3, we write in the energy equation

P1wv1||→P1wf

(
v1|| + vA1 cos θ1

)
+ P1wb

(
v1|| − vA1 cos θ1

)
= P1wv1|| + (P1wf − P1wb) vA1 cos θ1

P2wv2||→

∑
pol

P1wf

2

(
T 2
f +R2

f

)
+
∑
pol

P1wb

2

(
T 2
b +R2

b

) v2|| +

∑
pol

P1wf

2

(
T 2
f −R2

f

)
−
∑
pol

P1wb

2

(
T 2
b −R2

b

) vA2 cos θ2w.(13)

With the new terms in vA1 cos θ1 and vA2 cos θ2 equation 5 becomes

{
a

r
− 1

M2
s1

+
P1w

ρ1v21||

γ − 2r (γ − 1)−
∑
pol

(
T 2
b + T 2

f +R2
b +R2

f

)
(2− γ) /4

r − 1

+ 2r
γ − 1

r − 1

P1w

ρ1v21||

P1wb − P1wf

P1w

cos θ1
MA1

+

∑
pol

P1wf

2P1w

(
T 2
f −R2

f

)
−
∑
pol

P1wb

2P1w

(
T 2
b −R2

b

) vA2

v2||
cos θ2w


+
F1/r − F2/r

2

ρ1v1||

γ

γ − 1
− E1 − E2/r

ρ1v21||

γ − 1

r − 1

}(
1

r
− cos2 θ1

M2
A1

)2

− sin2 θ1
M2
A1r

{
1

r

(
a− 1− r

2

)
− a cos2 θ1

M2
A1

}
= 0.(14)
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Figure 3. Contour plots of the first critical fast Mach number in the plasma β - θ1 plane for ECR/ρ1v
2
1|| = 0.025 (left) and 0.1

(right) panels, showing initially forward propagating waves only (top), initially balanced waves (middle) and initially backward
propagating waves only (bottom).
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We plot in Figure 3 the Critical Mach numbers as before for the cases of ECR/ρ1v
2
1|| = 0.025 and 0.1 for the three cases

P1wf/P1w = 1, P1wb/P1w = 0, (top panels), P1wf/P1w = 0.5, P1wb/P1w = 0.5, (middle panels), and P1wf/P1w = 0,

P1wb/P1w = 1, (bottom panels). In both cases, the Critical Mach numbers are highest for the last, with waves

initially propagating away from the shock, and lowest with initially forward propagating waves. This is because the

initially backward propagating waves accumulate at the shock more than the forward propagating waves, providing

more dissipation by their amplification. The case with initially balanced waves is intermediate, and all cases presented

here have lower Critical Mach numbers than the case presented above, with balanced waves in both upstream and

downstream. The reason is that initially balanced waves upstream P1wf = P1wb do not automatically lead to balanced

waves downstream (P2wf = P2wb). In the calculation above it has been tacitly assumed the shock has expended yet

more energy in isotropizing the waves, over and above that required to amplify them, and this extra dissipation leads

to higher critical Mach numbers than in the middle panels of Figure 3.

4. DISCUSSION AND CONCLUSIONS

The main new effect in this paper has been the amplification of MHD waves passing through a shock. We have

calculated wave refraction, and transmission and reflection coefficients according to geometric optics. By way of

contrast, other works (Zank et al. 2012, 2017; Wang et al. 2022a) treat the transport of incompressible and nearly

incompressible turbulence in inhomogeneous flows more generally, without refering to specific wave properties of the

fluctuations. Zank et al. (2021), in a treatment more similar to ours, considers the transmission of various perturbations

with magnetic field and velocity components in the plane of a perpendicular shock. Thus at high plasma beta, oscillating

acoustic modes, and zero frequency entropy, vortical and magnetic island modes are found to be amplified in amplitude

by factors of order 10, similar to what we find for magnetosonic waves at low plasma beta in this paper. Nakanotani

et al. (2022) perform a 2D hybrid kinetic simulation with a fully turbulent upstream medium and find similar results,

together with diffusive shock acceleration at the shock front itself. Nakanotani et al. (2021) use similar methods to

consider a different particle acceleration mechanism, where it occurs as magnetic islands merge and contract postshock.

The origin of the turbulent structures is not discussed, but the energetic particle signature resembles that observed by

Voyager at the heliospheric termination shock.

Another extreme lies in shocks not just modified by the accelerated particles, but actually mediated by accelerated

particles. Mostafavi et al. (2018) find the heliospheric termination shock to be formed and dominated by processes

in the pickup ions rather than the (quasi-)thermal plasma. Wang et al. (2022b) consider a similar problem with

application to supernova remnant shock waves in the interstellar medium, using a coupled system of equations to

describe the gas, cosmic rays and turbulence, based in part onworks cited above. Both sets of authors find the shock

discontinuity disappears, and the transition between upstream and downstream is broadened.

The amplification of waves passing through an MHD shock represents an extra dissipation mechanism for kinetic

energy entering the shock. This increases the first critical fast Mach number, which delays the onset of Type II and

Type III radio bursts, and possibly also the release of SEPs (Zhu et al. 2018), which would accentuate the variability of

SEP events. The existence of a seed particle population that can be accelerated by a sub-critical shock not only affects

the injection process, but the waves they generate affect how long the shock may accelerate particles before releasing

them, and hence their eventual energy and spectrum. The inference of Zhu et al. (2018) also suggests that Type II

radio bursts (and also Type III but this should be obvious) require accelerated particle release from the shock. The

Type II radio burst does not result from the usual cosmic ray precursor disturbing the upstream medium ahead of the

shock, but from particles that can escape this precursor and move further upstream. The growth of Langmuir waves

driven by escaping cosmic rays would be faster than that due to the quasi-isotropic cosmic ray distribution drifting

with the shock, and the higher Langmuir wave energy density would allow faster conversion to electro-magnetic waves

before being overrun by the shock. This type of instability is qualitatively different to those discussed by Rakowski et

al. (2008) and Laming et al. (2014), where it is the quasi-isotropic cosmic ray precursor drifting with the shock that

excites electrostatic waves in the precursor that damp by heating electrons. The usual stated criterion for cosmic ray

escape from the shock acceleration process is that the particle gyroradius must be larger than the characteristic shock

dimension. This plausibly comes about when the shock becomes supercritical, because ions incident from upstream

are now reflected back to the upstream by the cross shock potential. This is not constant, but varies according to a

shock reformation cycle, and periods of low cross shock potential and hence low magnetic field jump will allow cosmic

ray escape.
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The idea that pre-existing suprathermal seed particles can be accelerated at a sub-critical shock and then begin to

be released when the shock becomes supercritical requires some reinterpretation of Laming et al. (2013). This paper

calculates the growth rate of waves, assumed upstream of a shock, by a distribution of seed particles that have either

reflected from, or are drifting with, the same shock. Such a scenario tacitly assumes a super-critical shock. In the case

of a sub-critical shock, the seed particles will not automatically reflect from the shock front, but will convect into the

downstream region. There they may excite waves, isotropize themselves and ultimately drift back to the upstream,

where the same processes would start the diffusive shock acceleration cycle. Thus the calculations are still relevant,

but the obliquity needs to be taken with respect to the downstream magnetic field of a laminar sub-critical shock,

which is moving with respect to the seed particle distribution with the postshock flow speed given in terms of the

shock velocity vs and compression r by vs (1− 1/r).

In this paper we have investigated the effect on shock criticality of a population of pre-existing seed particles and

associated waves in the upstream medium into which the shock is propagating. The accelerated particles themselves

do not have much effect, but the associated waves can be strongly amplified on passage through the shock and this

represents an alternative dissipation mechanism for the shock kinetic energy, beyond that provided by the plasma

resistivity. This extra dissipation increases the Mach numbers at which the shock can remain laminar, and the first

critical fast Mach number at which the shock has previously been assumed to commence particle acceleration is

increased. However we argue based on observations of Type II and III radio bursts and the careful study of Zhu et al.

(2018) that these Mach numbers should be more properly associated the beginning of the release of energetic particles

from the shock, and that given the right conditions, particle acceleration can commence as soon as the shock forms and

thermal plasma becomes compressed. Thus given an initial seed particle distribution, the path to SEP acceleration

and release close to the Sun might be more specified in terms of basic physics than has previously been appreciated,

and it will be a goal of future work to investigate this in more detail.

This work was supported by basic research funds of the Office of Naval Research, and by the NASA Heliophysics

Theory, Modeling and Simulation program grant 80HQTR20T0067.

APPENDIX

A. FULL TRANSMISSION AND REFLECTION COEFFICIENTS

We first collect some standard results for oblique shocks (e.g. Achterberg & Blandford 1986; Laming 2015; Melrose

1986). The downstream magnetic field is

B2 = rB1

(
M2
A1 − cos2 θ1

)
(M2

A1 − r cos2 θ1)

sin θ1
sin θ2

= B1
cos θ1
cos θ2

, (A1)

while the downstream perpendicular flow velocity component is

v2⊥ = v1
(r − 1) sin θ1 cos θ1
M2
A1 − r cos2 θ1

. (A2)

The tangent of the angle, θ2, between the shock normal and the downstream magnetic field is

tan θ2 = r tan θ1 + r
(r − 1) sin θ1 cos θ1
M2
A1 − r cos2 θ1

=
r tan θ1

M2
A1 − r cos2 θ1

(
M2
A1 − cos2 θ1

)
, (A3)

which corrects a typographical error in equation 39 in Laming (2015). This angle θ2 is different to the angles at which

initially parallel propagating waves in the upstream region 1 are refracted to in region 2. For Alfvén waves, or the

Alfvén polarization component of an upstream circularly polarized waves, the angle between the propagation direction

and the shock normal in the downstream region, θ2w, is

cot θ2w =
MA1r cot θ1 + r3/2 sin θ1 − r/ sin θ1

MA1 − r1/2 cos θ1
− r (r − 1) sin θ1 cos θ1

M2
A1 − r cos2 θ1

=
r cot θ1

M2
A1 − r cos2 θ1

(
M2
A1 +

MA1

cos θ1

(
r1/2 − 1

)
− r1/2 + sin2 θ1

)
. (A4)
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This corrects equation 11 in Laming (2015), which was missing a term r1/2 cos θ1 tanα/MA1 on the right hand side. As

well as being different to θ2, θ2w is also different to the angle at which initially parallel propagating magnetosonic waves,

or the magnetosonic polarization component of a circularly polarized waves, will refract. For postshock magnetosonic

waves at low plasma β (Laming 2015, equation 5 with VA1/VA2 = sin θ1/ sin θ2w)

cot θ2w = r cot θ1 − r
(r − 1) sin θ1 cos θ1
M2
A1 − r cos2 θ1

=
r cot θ1

M2
A1 − r cos2 θ1

(
M2
A1 − r + sin2 θ1

)
(A5)

As MA1 →∞, θ2w is the same for both Alfvén and magnetosonic waves, θ2w = cot−1 (r cot θ1), but remains different

to θ2. At high plasma β, less relevant in this work, magnetosonic waves refract more like Alfvén waves.

The transmission and reflection coefficients for the Alfvén polarization are relatively simple, and do not depend on

θ2w since the Alfvén polarization has δB orthogonal to the plane of incidence. They are (Laming 2015, equation 15)

Tf =
1

2

(MA1 + cos θ1)
(
r1/2 + 1

)
r1/2

MA1 + r1/2 cos θ1
, (A6)

Rf =
1

2

(MA1 + cos θ1)
(
r1/2 − 1

)
r1/2

MA1 − r1/2 cos θ1
, (A7)

Tb =
1

2

(MA1 − cos θ1)
(
r1/2 + 1

)
r1/2

MA1 − r1/2 cos θ1
, (A8)

and

Rb =
1

2

(MA1 − cos θ1)
(
r1/2 − 1

)
r1/2

MA1 + r1/2 cos θ1
. (A9)

Equivalent expressions for the magnetosonic polarization are much more involved. As in Laming (2015), who only

gave expressions for the limit MA → ∞, we neglect the effect of the passing wave on the motion of the shock front

itself, but otherwise retain all terms to derive the more general expressions;

Tf =
1

2

(MA1 cos θ1 + 1) r1/2
{

(B2/B1) cos (θ2 + θ2w) +MA1r
1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w

+
1

2

(MA1 cos θ1 + cos 2θ1)
{

(B2/B1) cos (θ2 − θ2w)−MA1r
1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w
, (A10)

Rf =
1

2

(MA1 cos θ1 + 1) r1/2
{
− (B2/B1) cos (θ2 + θ2w) +MA1r

1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w

+
1

2

(MA1 cos θ1 + cos 2θ1)
{

(B2/B1) cos (θ2 − θ2w) +MA1r
1/2
(
v2⊥/v1||

)
sin θ2w +MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w
, (A11)

Tb=
1

2

(MA1 cos θ1 − 1) r1/2
{
− (B2/B1) cos (θ2 + θ2w) +MA1r

1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w

+
1

2

(−MA1 cos θ1 + cos 2θ1)
{

(B2/B1) cos (θ2 − θ2w) +MA1r
1/2
(
v2⊥/v1||

)
sin θ2w +MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w
,(A12)

and

Rb=
1

2

(MA1 cos θ1 − 1) r1/2
{

(B2/B1) cos (θ2 + θ2w) +MA1r
1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w

+
1

2

(−MA1 cos θ1 + cos 2θ1)
{

(B2/B1) cos (θ2 − θ2w)−MA1r
1/2
(
v2⊥/v1||

)
sin θ2w −MA1r

−1/2 cos θ2w
}

(B2/B1) cos (θ2 + θ2w) cos (θ2 − θ2w) +M2
A1r

(
v2⊥/v1||

)2
sin2 θ2w − (M2

A1/r) cos2 θ2w
.(A13)
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Figure 4. Left: Schematic diagram of shock propagation in the pressure-velocity space for γG = γCR = 5/3, M = 1.972. Gas
pressure PG on the y-axis, velocity on the x-axis. Cosmic ray pressure PCR = 0 delineates the third side of the triangle as shown.
The Hugoniot is the two thick vertical lines at u1 (upstream) and u2 (downstream), and the reflected Hugoniot runs from the
intersection of the downstream Hugoniot and the sonic line and the intersection of the upstream Hugoniot and the PCR = 0 line.
The dotted curve shows the trajectory of plasma with a nonzero PCR, following the adiabatic gas law from its initial position
until it hits the reflected Hugoniot, and then making the shock jump to the downstream Hugoniot. Right: Schematic diagram
of shock propagation in the pressure-velocity space with cosmic rays trapped at the shock, i.e. with zero cosmic ray energy flux.
The Hugoniot is now the curve shown, and coincides with the reflected Hugoniot.

B. COSMIC RAY MODIFIED SHOCK STRUCTURE

We review the structure of cosmic ray modified shocks, largely following Drury & Voelk (1981) and Drury (1983)

where fuller details may be found, including proofs of some of the statements below. These authors concentrated on

the case with γG = 5/3, γCR = 4/3, whereas here we illustrate γG = γCR = 5/3, more relevant to the solar case. These

hydrodynamic treatments are mainly relevant to quasi-parallel MHD shocks, where we find the largest effects due to

the pre-existing waves. We consider such shocks without these waves, and ignore the effect of the particle acceleration

on the thermal gas, following the references above. The flow obeys the conservation laws for mass, momentum, energy

and entropy:

ρv=A

Av + PG + PCR =B
1

2
v2 +

γG
γG − 1

vPG +
γCR

γCR − 1
vCRPCR =C +

κ

γCR − 1

∂PCR
∂x

PGv
γG =D (B14)

where we have left open the possibility that the cosmic rays flow at a different speed, vCR, to the gas, flowing at

v. Other symbols have their usual meanings, with the cosmic ray diffusion coefficient given by κ. We plot the gas

propagation through the shock on a pressure-velocity diagram in Fig. 4. The left panel shows a diagram corresponding

to vCR = v above for γCR = γG = 5/3. Gas pressure, PG is on the y-axis, gas velocity v is on the x-axis, and the

third side of the triangle gives PCR = B − Av − PG = 0. The Hugoniot corresponds to the energy equation with

∂PCR/∂x = 0, and for γCR = γG is the two vertical lines at v1 and v2 as shown, for upstream and downstream

respectively. It represents the energetically accessible states of the gas.

Where PG = 0, PCR = B −Av and after substituting this into the energy equation above we find

v1,2 =
γCR

γCR + 1

B

A

[
1±

√
1− 2AC

B2

γ2CR − 1

γ2CR

]
. (B15)

Similarly, where PCR = 0, the same equation holds with γCR → γG, hence the vertical lines for the Hugoniot. We also

have

B=Av + PG = Av
(
1 + 1/γGM

2
s

)
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C=
1

2
Av2 +

γGPGv

γG − 1
=

1

2
Av2 +

Av2/M2
s

γG − 1
= Av2

(
1

2
+

1

M2
s (γG − 1)

)
(B16)

where M2
s = Av/ (γGPG + γCRPCR).

Taking jump conditions [Av + PG] = [PCR] = 0 and
[
Av2/2 + γGPGv/ (γG − 1)

]
= 0 Drury (1983) proves that

gas discontinuities must be symmetric about the sonic line PG = Av/γG in the direction of PCR = 0, so the reflected

Hugoniot show the locus of start points for such discontinuities that end on the downstream Hugoniot. This conclusions

would be slightly changed by the inclusion of terms in F1,2 and E1,2 from equations 2 and 4, but only mildly. Gas at a

starting point (v1, PG1) evolves adiabatically with PG ∝ v−γG until it hits the reflected Hugoniot, whereupon it jumps

along a line parallel to PCR = 0 to the downstream Hugoniot which is the final state of the gas. This is illustrated by

the dotted curve on the left panel of Figure 4. To preserve a discontinuity, we require that

PG2 = PG1 (v1/v2)
γG > Av2/γG, (B17)

so that the pressure at v2 must be higher than that given by the sonic line. Substituting for v1 and v2 from equations

B15, and using AC/B2 ' 1/2 +
(
M2
s γG (γG − 1)

)−1
for M2

s >> 1 from equation B16 we find1 + 1
γG

√
1− γG+1

γG
2
M2

s

1− 1
γG

√
1− γG+1

γG
2
M2

s


1+γG

>
M2
s

1−N
(B18)

where N = PCR/ (PG + PCR). Even at N = 0, equation B18 suggests no discontinuity for γG = 5/3 for Ms > 5.5.

This agrees with the more general result in Becker & Kazanas (2001). We argue that this must mean that the model

is being stretched beyond its regime of validity, and question whether cosmic rays really do stream at the velocity of

the background gas as PCR → 0.

The right hand panel of Figure 4 gives the pressure-velocity diagram for the same shock, but with vCR = 0, i.e. zero

cosmic ray energy flux, appropriate for when the energetic particles are still trapped in the shock acceleration process.

The Hugoniot now resembles that for standard fluid shocks (e.g. Landau & Lifshitz 1987), and coincides with the

reflected Hugoniot. Gas states initially on the Hugoniot below the sonic line must make a discontinuous jump parallel

to PCR = 0 to a position on the Hugoniot above the sonic line. There is however a maximum cosmic ray pressure,

PCR, for which this model can be valid. With

PCR = B −Av − γG − 1

γG

(
C

v
− Av

2

)
(B19)

the maximum is found at v =
√

2C/A× (γG − 1) / (γG + 1). i.e. where the Hugoniot intersects the sonic line, with

value

PCR,max
Av

= 1 +
1

γGM2
s

− 1

γG

√
γ2G − 1 +

2γG + 2

M2
s

. (B20)

As M2
s → ∞, PCR,max/Av = PCR,max/ρv

2 → 1 −
√

1− 1/γ2G = 0.2 for γG = 5/3. At Ms = 2 − 3, PCR,max/ρv
2 =

0.09− 0.14, giving ECR,max/ρv
2 = 1.5PCR,max/ρv

2 similar to or greater than values used in Figures 2 and 3.
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